An evaluation of slope stability classification

Robert Hack

Section Engineering Geology, International Institute for Geoinformation Sciences and Earth Observation (ITC), Delft, The Netherlands

Eurock'2002, Madeira, 25 November 2002

Engineering Geology

25 November 2002 Eurock'2002 - keynote class.systems slopes - Robert Hack

Slopes in The Netherlands?

Jan van Goyen, View at Leiden, 1650 – Museum Lakenhal, Leiden

Eurock'2002 - keynote class.systems slopes - Robert Hack

25 November 2002

Dykes have slopes!

Engineering Geology

(Brouwersdam, The Netherlands)

25 November 2002 Eurock'2002 - keynote class.systems slopes - Robert Hack

Dyke with basalt cover may be modelled with discontinuous rock mechanics

(seadyk with basalt cover: photo: Sytske Dijksen; http://www.waddenzee.nl/)

25 November 2002

Eurock'2002 - keynote class.systems slopes - Robert Hack

Also real rock slopes in the Southern part of The Netherlands!

(ENCI quarry; photo: http://www.beeldexpressie.be/film/)

25 November 2002

Eurock'2002 - keynote class.systems slopes - Robert Hack

Engineering Geology

Other reasons to study slopes even if coming from a flat country

Slopes are an ideal study object for soil and rock mechanics in general because:

- Soil or rock in tunnels and foundations often not visible
- Failures in tunnels or foundations not or difficult to study
- Slopes often easily accessible
- Often many slopes in a relatively small area

and not very scientific, but highly important:

many Dutch civil engineering companies work worldwide with soil and rock slopes

Engineering Geology

Slope stability

Engineering Geology

25 November 2002 Eurock'2002 - keynote class.systems slopes - Robert Hack

What is required to analyse the stability of a slope ?

- soil and rock mass properties
- present and future geometry
- present and future geotechnical behaviour of soil or rock mass
- external influences such as earthquakes

Slope stability analyses done per geotechnical unit in a geometrically uniform slope geometry, e.g. a slope analyses is done for a uniform material with uniform geometry

Is that possible ?

Engineering Geology

25 November 2002 Eurock'2002 - keynote class.systems slopes - Robert Hack

Variation

Heterogeneity of mass causes:
variation in mass properties
Heterogeneity of slope geometry causes
Variation in geometry

Mass versus geotechnical unit

 Mass is split in units such that homogenous geotechnical units are created that can be analysed with assumed uniform properties for the unit

However, a certain variation in properties will always be present
How to define a unit?

Example of geotechnical units

Definition of a geotechnical unit is based on economical or environmental impact or the hazard the project forms for human live

- the more different units, the better the uniformity per unit and the better the analyses, but the higher the costs
- costs are balanced against the economical and environmental value of a project, and the potential hazard a project may impose on human live

But no unit will be absolutely uniform

Hence, a certain variation will always be present in any geotechnical unit, causing an uncertainty in properties used for the analyses

Uncertainty

 Uncertainty in properties Uncertainty (error) in measurements of properties Uncertainties in geometry Uncertainty (error) in measurements of geometry (often small) Uncertainty in failure mechanisms applicable

Engineering Geology

25 November 2002 Eurock'2002 - keynote class.systems slopes - Robert Hack

Options for analysing slope stability

Analytical Numerical Classification

> Engineering Geology

25 November 2002 Eurock'2002 - keynote class.systems slopes - Robert Hack

Analysing slope stability

- analytical: only in relatively simple cases possible for a discontinuous rock mass
- numerical: difficult and often cumbersome, however, possible with discontinuous numerical rock mechanics programs such as UDEC
- Hence, classification systems may gineering be a good and simple alternative

What options from existing classification systems?

Engineering Geology

25 November 2002 Eurock'2002 - keynote class.systems slopes - Robert Hack

Classification systems are empirical relations that relate rock mass properties either directly or via a rating system to an engineering application, e.g. a slope

Engineering Geology

25 November 2002 Eurock'2002 - keynote class.systems slopes - Robert Hack

Bieniawski (RMR) Vocchia

Vecchia Robertson (RMR) Romana (SMR) Haines etc.

Selby

Engineering Geology

25 November 2002 Eurock'2002 - keynote class.systems slopes - Robert Hack

21

Existing classification systems:

For underground:

Bieniawski (RMR) Barton (Q) Laubscher (MRMR) etc.

For slopes:

Development of existing rock mass classification systems

- First developed for underground excavations
- Most slope systems are based on underground systems adjusted to be used for slopes
- Therefore a legacy in properties and Geology parameters from underground systems

Development of existing rock mass classification systems

Most systems that are used at present are based on systems developed some 30 years ago At that time "state-of-the-art" and new, but this is no reason not to investigate whether the systems are still as applicable or that new methodologies (for example, with the use of computers) allow for better systems

Existing rock mass classification systems

- Wide variation in rating systems, methodologies, parameters, calculation methods, boundaries, etc.
- Addition, multiplication, logarithmic, etc.
- Wide variation in the influence of parameters on the final result
- In some un-understandable ratings and relations

Strange influence parameters in some systems

For example:

A slope in a rock mass with a high intact rock strength and one thick clay filled (gauge type) discontinuity set that will lead to sliding failure.

In some systems the intact rock strength will partially determine the stability rating, while the slope will be unstable due to the presence of the thick clay filled discontinuity and not at all be influenced by the intact rock strength.

How valid is such a system?

25 November 2002 Eurock'2002 - keynote class.systems slopes - Robert Hack

Correlation between RMR and Q ?

Rock mass parameters of interest for engineering structures in or on rock

Engineering Geology

25 November 2002 Eurock'2002 - keynote class.systems slopes - Robert Hack

geotechnical unit	intact rock strength				
	discon- tinuities		orientation (with respect to engineering structure)		
			amount of disc. sets		
		rock block size	spacing per disc. set		
			persistence per disc. set		
			surface characteristics of discontinuity wall	material friction	
		along discontinuity		roughness (dilatancy)	
		(condition of discontinuity)		strength	
				deformation	
			infill material		
	susceptibility to weathering				
	deformation parameters of intact rock/rock mass				
engineering structure	geometry of engineering structure (size and orientation of a tunnel, height and orientation of a slope, etc.)				
external influences	water pressure/flow, snow and ice, stress relief, external stress, etc.				
	type of excavation				
November 2002	Eurock'200	2 - keynote class.systems s	lopes - Robert Hack	28	

Existing classification systems

- The absence of the intact rock strength (except for a low intact rock strength/environment stress ratio), in the Barton system.
- The absence of discontinuity spacing as quantitative parameter in the Barton system.
- The strong reduction in influence of the water parameter in the Laubscher and Haines systems as compared to the systems of Bieniawski and Barton.
- The absence of a water/water pressure parameter in the Robertson modification for slopes of the Bieniawski system and in the slope stability system of Vecchia.
- The strong influence of the susceptibility to weathering in the Laubscher system.
- The strong increase in influence of orientation of discontinuities in relation to the orientation of the walls and roof of underground excavations in the Laubscher system compared to the Bieniawski system.

MAXIMUM NEGATIVE INFLUENCE OF PARAMETERS (in percentage from final maximum rating)(1)(2)								
classification system(2)	rating range	intact rock strength	RQD					
EARLY SYSTEMS (for underground excavations)								
Deere (RQD)	0 - 100		100					
Wickham (RSR)	19 - 120							
RECENT SYSTEMS (for underground excavations)								
Bieniawski (RMR)	0 - 100	15	20					
Barton(3) (Q)	0.00006 - 2666	with rock load parame- ter(3)						
Laubscher	0 - 120	17 (no change	13(5) of class)					
SLOPE SYSTEMS								
Selby	0 - 100	20						
Bieniawski (RMR)	0 - 100	15	20					
Vecchia	0 - 100		•					
Robertson (RMR)(10)	0 - 100	30	20					
Romana (SMR)	0 - 115	13	17					
Haines	0 - 100	17	13(5)					

Influence of intact rock strength and RQD

> Engineering Geology

30

25 November 2002

Eurock'2002 - keynote class.systems slopes - Robert Hack

MAXIMUM NEGATIVE INFLUENCE OF PARAMETERS (in							
percentage from final maximum rating)							
classification system	water	excavation methods					
EARLY SYSTEMS (for underground excavations)							
Deere (RQD)							
Wickham (RSR)	7	17					
RECENT SYSTEMS (for underground excavations)							
Bieniawski (RMR)	15						
Barton(3) (Q)	95						
Laubscher	3	20					
SLOPE SYSTEMS							
Selby							
Bieniawski (RMR)	15						
Vecchia							
Robertson (RMR)(10)							
Romana (SMR)	13	13					
Haines	3	20					

Influence of water and method of excavation

Classification systems: Problems with Intact rock strength

- If intact rock is defined as Unconfined Compressive Strength (UCS):
- 1. Inclusion of discontinuities within 10 cm length
- 2. Samples tested in the laboratory tend to be of better quality (or of lower quality if rock is very strong)
- 3. The intact rock strength measured depends on the sample orientation if the intact rock exhibits anisotropy.
- 4. UCS is not a valid parameter because, in reality, Geology most rock will be stressed under circumstances resembling conditions of triaxial tests rather than UCS test conditions

Classification systems: Problems with RQD (1)

Arbitrary length of 10 cm 1.

Orientation of borehole in relation with discontinuity 2/3. spacing

Classification systems: Problems with RQD (2)

4. Weak rock pieces (weathered pieces of rock or infill material) that are not sound should not be considered for determining the RQD (Deere et al., 1967, 1988). To exclude infill material will usually not be too difficult; however, excluding pieces of weathered, not sound rock is fairly arbitrary.

5. The RQD value is influenced by drilling equipment, drilling operators and core handling. Especially RQD values of weak rocks can be considerably reduced due to the to the top the second se

Classification systems: Problems with RQD (3)

6. No standard core barrel - single, double, or triple barrel?

7. Diameter of boreholes

8. Drilling fractures should be re-fitted, but what are drilling fractures?

9. RQD should be determined per lithology, but where is the lithology boundary if washed away?

Classification systems: Problems with RQD (5)

Some systems allow for replacing RQD by fracture frequency or equivalent

or use a relation to calculate an RQD value from discontinuity measurements on an exposure

Why should then the RQD be used as parameter?

Many classification systems allow for only one rating for discontinuity set spacing and shear strength; this then to be the spacing and shear strength of the most unfavourable discontinuity set

What is the most unfavourable discontinuity set ?

— discontinuity set with good condition; e.g. high shear strength

discontinuity set with very poor condition; e.g. low shear strength

Engineering Geology

Eurock'2002 - keynote class.systems slopes - Robert Hack

Classification systems problem:(1)

In many systems the following parameters are absent:

- Anisotropic roughness of discontinuities
- Discontinuity karst features
- Susceptibility to weathering
- Deformation of intact rock and rock mass, stress relief
- Relative orientation of slope and discontinuities
- Slope height
- Water, influence of ice and snow

25 November 2002

Eurock'2002 - keynote class.systems slopes - Robert Hack

Engineering Geology

39

Classification systems problem: Water (1)

- If water parameter defined on amount of water:
- 1 Amount of water depending on intersected number of discontinuities, hence, on the size of the excavation
- 2 The amount of water is not the pressure of water (which is the important parameter)
- 3 Amount and pressure not constant throughout the slope; e.g. lower in the slope higher pressure than high in the slope
- 4 Difference in underground excavations and slopes for pressure regime

Classification systems problem: Water (2)

- 5 Water transport in discontinuities mainly via channels: if also applicable to pressure: resulting pressure on a discontinuity considerably less than pressure over full discontinuity surface
- 6 Run-off water over the slope face degrades slope face and may lead to instability
- 7 Not constant over time wait for maximum rainfall?

Classification systems problem: Water (3)

Practical problems with determining water:

- 1 How to differentiate between run-off water over the slope face and water under pressure out of a discontinuity?
- 2 How to measure the quantity of water out of a slope (tunnel with weir) and differentiate with surface run-off
- 3 Terminology often subjective: dripping <> wet Engineering Geology

No clear differentiation "as is" and "as will be"

External influences as weathering and method of excavation will have influenced the site characterized but will also (and likely differently) influence the new slope in the future

Bias and familiarization

- Often not clear how many different persons developed a system and whether designer bias may be present
- Those using a system and being satisfied with the system may be so familiarized that they do not see the flows anymore

Slope Stability probability Classification (SSPC)

Engineering Geology

25 November 2002 Eurock'2002 - keynote class.systems slopes - Robert Hack

45

- three step classification system
- based on probabilities
- independent failure mechanism assessment

Three step classification system (2)

Eurock'2002 - keynote class.systems slopes - Robert Hack

SLOPE STABILITY ASSESSMENT

Excavation specific parameters for the excavation which is used to characterize the rock mass

- Degree of weathering
- Method of excavation

Rock mass Parameters

- Intact rock strength
- Spacing and persistence discontinuities
- Shear strength along discontinuity
- Roughness large scale
 - small scale
 - tactile roughness

- Infill
- Karst
- Susceptibility to weathering

Slope specific parameters for the new slope to be made

- Expected degree of weathering at end of lifetime of the slope
- Method of excavation to be used for the new slope

Engineering Geology

25 November 2002 Eurock'2002 - keynote class.systems slopes - Robert Hack

Intact rock strength

By simple means test - hammer blows, crushing by hand, etc.

Engineering Geology

25 November 2002 Eurock'2002 - keynote class.systems slopes - Robert Hack

Spacing and persistence of discontinuities

Based on the block size and block form by first visual assessment and then quantification of the characteristic spacing and orientation

(*i*-angles and dimensions only approximate)

Shear strength roughness large scale

Three classes: rough smooth polished

Shear strength roughness tactile

Infill:

- cemented
- no infill
- non-softening (3 grain sizes)
- softening (3 grain sizes)
- gauge type (larger or smaller than roughness amplitude)
- flowing material

Shear strength - Infill

Shear strength - karst

Karst or no karst

Shear strength - condition factor

Discontinuity condition factor (*TC*) is a multiplication of the rating for small- and large scale roughness, infill and karst (similar to method used by Laubscher)

Orientation dependent stability

Stability depending on relation between slope and discontinuity orientation

Engineering Geology

25 November 2002 Eurock'2002 - keynote class.systems slopes - Robert Hack

60

How did we develop it? - sliding criterion:

Sliding criterion

sliding occurs if : TC < 0.0113 * AP</pre>

Engineering Geology

25 November 2002 Eurock'2002 - keynote class.systems slopes - Robert Hack

62

Sliding probability

Eurock'2002 - keynote class.systems slopes - Robert Hack

Toppling criterion

$TC < 0.0087 * (-90^{\circ} - AP + dip_{discontinu ity})$

Toppling probability

Eurock'2002 - keynote class.systems slopes - Robert Hack

Orientation independent stability

Engineering Geology

25 November 2002 Eurock'2002 - keynote class.systems slopes - Robert Hack

66

Overall spacing of discontinuity sets

Block size and form relations from Taylor

Eurock'2002 - keynote class.systems slopes - Robert Hack

Overall condition of discontinuity sets

 $TC_{1,2,3}$ are the condition, and $DS_{1,2,3}$ are the spacings of discontinu ity sets 1, 2, 3

Shear plane failure following Mohr-Coulomb for rock mass

If the dip $_{slope} \leq \varphi'_{mass}$: the maximum slope height (H_{max}) is infinite else

$$H_{\max} = 1.6 * 10^{-4} * coh'_{mass} * \frac{\sin (dip_{slope}) * \cos (\varphi'_{mass})}{1 - \cos (dip_{slope} - \varphi'_{mass})}$$

Probability orientation independent failure

EUTOCK 2002 - KEYHOLE CLASS.SYSTEMIS STOPES - KOUELT MACK

How did we do this?

For each slope j:

visually estimated stability = class 1

visaually estimated stability = class 2 or 3

$$\begin{cases} \frac{\varphi_{mass}}{dip_{slope}} \ge 1 \quad (stable) \to er = 1 \\ \frac{\varphi_{mass}}{dip_{slope}} < 1 \begin{cases} \frac{H_{max}}{H_{slope}} \ge 1 \quad (stable) \to er = 1 \\ \frac{H_{max}}{H_{slope}} < 1 \quad (unstable) \to er = \frac{H_{slope}}{H_{max}} \\ \frac{\varphi_{mass}}{dip_{slope}} \ge 1 \quad (stable) \to er = \frac{\varphi_{mass}}{dip_{slope}} \\ \frac{\varphi_{mass}}{dip_{slope}} < 1 \begin{cases} \frac{H_{max}}{H_{slope}} \le 1 \quad (unstable) \to er = 1 \\ \frac{H_{max}}{H_{slope}} \le 1 \quad (unstable) \to er = 1 \\ \frac{H_{max}}{H_{slope}} > 1 \quad (stable) \to er = \frac{H_{max}}{H_{slope}} \end{cases}$$

How did we do this?

Poorly blasted slope

General impression: extremely poor. The stability of the new road cut with a height of 13.8 m, with a degree of rock mass weathering of 'moderately' and 'dislodged blocks' due to blasting, results in a stability assessment of about 8 % for a slope dip of 70° in 1996. This is in agreement with the visual observed stability at that time. The rock mass is clearly not able to support a slope with a dip of 70°. According to the SSPC system, stability will be achieved if the slope dip is decreased to about 45°. In 2002 the slope dip had been reduced to about 55° and visually assessed the slope is still unstable.

OLD ROAD CUTS (> 40 years old) in same thin bedded limestone: SSPC system probability to be stable of > 95 % with a slope dip of 70° and a height of 5 m. Geology same rock mass characteristics are used for the new slope. Hence, both slopes are assumed to have been made in the same 'reference' rock mass as far as the thin-bedded units are considered.

Plane sliding failure 40 year old road cut, Spain

25 November 2002

Eurock'2002 - keynote class.systems slopes - Robert Hack

Plane sliding failure (3)

- Laboratory test: φ=45°
- Stability assessed using:
 - SSPC 55% stability probability, failure imminent (\$\\$<35°)

Slope Stability probability Classification (SSPC)

Saba case - Dutch Antilles

Engineering Geology

25 November 2002 Eurock'2002 - keynote class.systems slopes - Robert Hack

79

Landslide in harbour

25 November 2002

Eurock'2002 - keynote class.systems slopes - Robert Hack

80

Geotechnical zoning

Brown-red, massive lava (andesite)
Pyroclastic deposits (eruptive material)
Light-grey andesite (pipe)
Slope debris deposit, consolidated
Unconsolidated slope debris (recent)
20
Dip direction and dip
Spring
Contour thickness slope debris (m)
Land slide of February 1997
Instable blocks
I-II-III-IV Geotechnical zone
20 – Topography (m)

SSPC results

Pyroclastic deposits

Rock mass friction Rock mass cohesion Calculated maximum possible height on the slope

Calculated SSPC 35° 39kPa 13m

Laboratory / field 27° (measured) 40kPa (measured) 15m (observed)

Failing slope in Manila, Philippines

25 November 2002

Eurock'2002 - keynote class.systems slopes - Robert Hack

83

Failing slope in Manila (2)

- tuff layers with near horizontal weathering horizons (about every 2-3 m)
- slope height is about 5 m
- SSPC non-orientation dependent stability about 50% for 7 m slope height
- unfavourable stress configuration due to corner

Geology

Earthquake influence on rock slopes

Engineering Geology

25 November 2002 Eurock'2002 - keynote class.systems slopes - Robert Hack

85

During an earthquake may occur either together or subsequently:

- reduction normal stress and consequently also shear strength
- breaking of cementation in discontinuities
- breaking of asperities on discontinuity planes
- displacement of discontinuities leading to nonfitting of discontinuity roughness
- resonance effects increasing accelerations and displacements

Engineering Geology

 (breaking of intact rock - generally only if intact rock strength is very weak)

The results of an earthquake

- permanent reduction of shear and tensile strength (if present) along discontinuities
- opening of discontinuities; allowing water influx, etc.
- (increase in number of discontinuities because of fracturing of intact rock)

Stability calculation - pseudostatic analyses (2)

 $F = \frac{\text{resisting force}}{\text{driving force}} =$ $=\frac{coh_{ab} + ((W - Fv)\cos\psi - Fh\sin\psi - u_{ab})*\tan\varphi}{(W - Fv)\sin\psi + Fh\cos\psi + v_{bc}\cos\psi}$ coh_{ab}, φ = cohesion force, respective ly friction along discontinu ity W = weight of block u_{ab}, v_{bc} = the water forces in the discontinu ities Fv, Fh = horizontal and vertical force due to eathquake accelerati on

Engineering Geology

25 November 2002 Eurock'2002 - keynote class.systems slopes - Robert Hack

Stability calculation - pseudostatic analyses (3)

$$Fh = \frac{a_h W}{g} \qquad Fv = \frac{a_v W}{g} =$$

W = weight of block
 $a_h, a_v =$ accelerations

Stability calculation - pseudostatic analyses (4)

- choice of a_h and a_v
- difficult
- no clear rules what to use
- Terzaghi (1950): a_h = 0.1 g for severe, = 0.2 g for violent, and = 0.5 g for catastrophic earthquakes
- Marcuson (1981): a_h and a_v about 1/3 to 1/2 of a_{peak}
- Franklin (1980): a_h = 0.5 a_{peak} (to avoid "dangerously large deformations")

Drawbacks of a pseudo-static analyses

- Reduction shear strength during the earthquake only due to reduction in normal stresses
- No breaking of cementation or asperities
- No displacement effects and subsequent reduction in shear strength
- No deformation or rotation of blocks
- No resonance effects
- (no breaking of intact rock)

25 November 2002 Eurock'2002 - keynote class.systems slopes - Robert Hack

Stability analysis - Newmark (1)

- Criterion of displacement rather than stress equilibrium
- Displacement of a ridged block over a surface
- Displacement depends on
- Frequency (number of pulses in which yield acceleration is exceeded)
- Maximum acceleration per peak

Stability analysis - Newmark (3)

Possible to include "strain hardening" or "strain softening" constitutive models for the sliding plane (later may be very applicable to rock slopes - permanent reduction shear strength, etc.)

Drawbacks of Newmark displacement methodologies

- Only plane sliding
- No deformation or rotation of blocks
- No resonance effects
- (no breaking of intact rock)

Simple empirical relations Umbria-Marche earthquake of 26 September 1997

25 November 2002

Simple empirical relations (2) Umbria-Marche earthquake of 26 September 1997

$$f(D) = A \cdot g(s) + B \cdot h(k) + C$$

D = the landslide displacement; g(s) = the seismic parameter h(k) = the landslide susceptibility to failure; A, B, C = constants

Engineering Geology

(after Lucia Luzi in Hack, 2002)

25 November 2002 Eurock'2002 - keynote class.systems slopes - Robert Hack

97

Simple empirical relations (3)

> Engineering Geology

Eurock'2002 - keynote class.systems slopes - Robert Hack

Eurock'2002 - keynote class.systems slopes - Robert Hack

Discussion earthquakes

- slope stability analyses with earthquake influence far more difficult than without
- simplifications in accepted calculation methods such that it is questionable whether they make sense
- why are there no classification system for earthquake prone areas?

Heterogeneity

- even if uncertainty is included this is only up to a certain extend – what extend is to the discretion of the engineer
- can heterogeneity be defined by an automatic procedure, e.g. for example Lidar

Heterogeneity (2)

(modified after Slob et al, 2002)

25 November 2002

Eurock'2002 - keynote class.systems slopes - Robert Hack

Future degradation of soil or rock due to weathering, ravelling, etc.

no reliable quantitative relations exist to forecast the future geotechnical properties of soil or rock mass

Future degradation (2)

Future degradation (3)

Engineering Geology

25 November 2002

Eurock'2002 - keynote class.systems slopes - Robert Hack

105

Conclusions

- classification works for slope stability
- classification can incorporate uncertainty
- classification can be improved by using more elaborate relations
- computers can be used to optimise complicated relations
- be not afraid to abandon inherited methodologies and parameters

Future

- definition of heterogeneity
- expressions for quantification of future geotechnical properties
- classification systems for earthquake areas
- influence of snow and ice
- submersed marine slopes ?

